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ABSTRACT: Uncrewed aircraft system (UAS) observations collected during the 2018 Lower Atmospheric Process

Studies at Elevation—a Remotely Piloted Aircraft Team Experiment (LAPSE-RATE) field campaign were assimilated

into a high-resolution configuration of the Weather Research and Forecasting Model using an ensemble Kalman filter. The

benefit of UAS observations was assessed for a terrain-driven (drainage and upvalley) flow event that occurred within

Colorado’s San Luis Valley (SLV) using independent observations. The analysis and prediction of the strength, depth, and

horizontal extent of drainage flow from the Saguache Canyon and the subsequent transition to upvalley and up-canyon flow

were improved relative to that obtained both without data assimilation (benchmark) and when only surface observations

were assimilated. Assimilation of UAS observations greatly improved the analyses of vertical variations in temperature,

relative humidity, and winds at multiple locations in the northern portion of the SLV, with reductions in both bias and the

root-mean-square error of roughly 40% for each variable relative to the benchmark run.Despite these noted improvements,

some biases remain that were tied to measurement error and/or the impact of the boundary layer parameterization on

vertically spreading the observations, both of which require further exploration. The results presented here highlight how

observations obtained with a fleet of profiling UAS improve limited-area, high-resolution analyses and short-term forecasts

in complex terrain.
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1. Introduction

The need for more accurate, higher resolution probabilistic

weather guidance spans a range of applications (Dutton 2002).

Wind energy companies need high fidelity wind predictions

that account for mesoscale and terrain-induced wind variabil-

ity across a wind farm (Wilczak et al. 2015; Olson et al. 2019b).

Precision agriculture requires localized and time-varying pre-

dictions of soil moisture, evapotranspiration and winds across

farmlands to support more efficient irrigation practices and

application of pesticides (Tesfuhuney et al. 2013; Easton et al.

2017). Wildland fire management also requires accurate pre-

dictions of how terrain and fuel sources interact withmesoscale

flows to influence winds and fire behavior (Coen et al. 2013;

Muñoz-Esparza et al. 2018; Jiménez et al. 2018). Emerging

modes of autonomous aerial transportation including package

delivery by small uncrewed aircraft systems (UAS) and

‘‘Urban Air Mobility’’ mean that decision makers and stake-

holders will require a more highly resolved depiction of sub-

mesoscale flows (e.g., drainage winds and lake-land breeze

circulations) and turbulence structures (Glasheen et al. 2020;

Steiner 2019; Garrett-Glaser 2020). To meet these weather

guidance needs, the accuracy of mesoscale predictions needs to

be improved so that they can be downscaled to provide higher

resolution guidance. As such, the distribution of observations

of atmospheric state must more closely match the grid spacing

of today’s operational convection-permitting models.

The emergence of small UAS for use in commercial appli-

cations and for atmospheric sensing has grown exponentially

over the last decade. Elston et al. (2015) summarized devel-

opments in the use of small fixed-wing UAS for sampling

boundary layer processes and provided platform-dependent

estimates of measurement accuracy. Fixed-wing aircraft can

profile the atmosphere (either flying tight spirals or slant paths)

or sample spatial variability in atmospheric parameters by

flying long horizontal transects at constant altitude (e.g., Elston

et al. 2011; Houston et al. 2012).Multirotor aircraft have shownCorresponding author: Anders A. Jensen, ajensen@ucar.edu
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great utility in rapidly profiling the lower atmosphere, pro-

viding a cost-effective means of monitoring the thermody-

namic and kinematic evolution of the boundary layer. These

weather-sensing drones are gaining maturity as multirotor

aircraft have demonstrated the potential to operate autono-

mously from launch to landing (Chilson et al. 2019) including

automated recharging (Leuenberger et al. 2020). Additional

challenges such as the influence of propeller wash on mea-

surement accuracy of temperature and winds near the surface,

under conditions of large lapse rates, or near strong inversions

have been mitigated significantly though sensor integration

studies (Greene et al. 2019). Small UAS have also been lauded

for their ability to collect observations in remote locations and

extreme environments ranging from icing conditions and se-

vere cold in the polar regions (Curry et al. 2004; Cassano 2014;

de Boer et al. 2018) to the corrosive, wet and turbulent

boundary layer within a hurricane’s eyewall (Cione et al. 2016,

2020). In addition to the expanding capabilities of small

weather-sensing UAS, fleets of commercial drone are also

being equipped with sensors for measuring the current atmo-

spheric state to support their operations (e.g., Fleischer 2019).

The rapid growth in commercial operations and maturing

sensing capabilities can potentially lead to small UAS filling a

known data void in the lower atmosphere (e.g., Vömel et al.

2018; Barbieri et al. 2019; Robinson et al. 2020).

While additional work is still needed to move UAS toward

full autonomy via reduced cost and increasing reliability, an

operational demonstration of the vision laid out by Chilson

et al. (2019) to develop a 3D mesonet by coupling automated

weather-sensing UAS (including automated recharging) with

existing surface-based mesonet stations is nearing fruition

(Leuenberger et al. 2020). Concepts for using self-organizing

swarms of drones to sample evolving atmospheric features are

currently being developed (Hildmann et al. 2019). For exam-

ple, Reymann et al. (2018) recently demonstrated a UAS ca-

pable of sampling the Lagrangian evolution of a trade wind

cumulus cloud. These techniques will allow small UAS to au-

tonomously adapt to a range of environmental conditions thus

enabling the continuous, simultaneous sampling of sub-

mesoscale atmospheric flow features and atmospheric sta-

bility that can be assimilated into mesoscale models or used

directly by weather forecasters. This paradigm has been

demonstrated during a recent field study that used a fleet of

small UAS to simultaneously sample low-level winds, moisture

and stability to improve supercell thunderstorm predictions

(Frew et al. 2020).

Progress will continue in developing both onboard sensor

technologies and methods for performing targeted sampling of

the lower atmosphere. Combining new sensing strategies (i.e.,

scheduled and on-demand weather-sensing UAS) with obser-

vations collected symbiotically (i.e., not primary mission)

during routine commercial UAS flights could provide un-

precedented sampling of the lower atmosphere. As their usage

expands, the impact of assimilating commercial UAS obser-

vations into operational mesoscale models could ultimately

rival that which has been demonstrated for observations col-

lected with commercial aircraft via theAircraftMeteorological

Data Relay (AMDAR) program (Cardinali et al. 2003;

Benjamin et al. 2010; Petersen 2016; Petersen et al. 2016; James

and Benjamin 2017). Petersen et al. (2016) demonstrated the

value of a limited number of aircraft moisturemeasurements as

compared with using radiosondes alone.

Observing System Experiments (OSEs) performed by

James and Benjamin (2017) indicate that the assimilation of

commercial aircraft observations has the single greatest impact

on the accuracy of regional mesoscale model prediction among

all conventional observing systems and several satellite prod-

ucts (e.g., satellite-derived atmospheric motion vectors, cloud

top pressure and temperature, and satellite radiances). In fact,

recent sensitivity studies indicated that the substantial reduc-

tion in airline operations caused by the COVID-19 pandemic

significantly reduced the accuracy of mesoscale predictions of

temperature, winds, and humidity by as much as 60% averaged

over an entire season (James et al. 2020). Despite the notable

gains in skill afforded by commercial airline observations, ad-

ditional low-level atmospheric observations are needed be-

cause commercial aircraft spend little time in the lower

atmosphere, and the limited time spent at these low altitudes is

constrained to major airport locations. In contrast, small UAS

coverage within the lower atmosphere is expected to flourish in

the next decade (FAA 2020). The combination of meteoro-

logical observations from small commercial UAS and dedi-

cated UAS observing systems would be complimentary to

those obtained with commercial aircraft.

In this study, the value of assimilating UAS observations

collected during the Lower Atmospheric Process Studies at

Elevation—a Remotely piloted Aircraft Team Experiment

(LAPSE-RATE) field experiment (de Boer et al. 2020d) is

assessed. While previous studies have explored the value of

assimilating UAS observations with various assimilation

techniques (Jonassen et al. 2012; Ágústsson et al. 2014; Flagg

et al. 2018; Sun et al. 2020), to our knowledge, this study rep-

resents the first attempt to assimilate observations obtained

from a large fleet of UAS using regional ensemble adjustment

Kalman filter (EAKF) data assimilation (DA). In this paper,

details of the EAKF configuration are given and results for a

challenging test case (evolution of terrain-driven flows in

complex terrain) are discussed. The test case and observational

platforms used in this study are described in section 2. Details

of the EAKF data assimilation system andmodel configuration

are described in section 3. The results are presented in

sections 4 and 5 followed by a brief discussion of the results and

an outlook to the future in sections 6 and 7, respectively.

2. LAPSE-RATE observations

Observations used in this study were collected during the

International Society for Atmospheric Research using

Remotely Piloted Aircraft (ISARRA) LAPSE-RATE field

campaign (de Boer et al. 2020d). It took place in Colorado’s

San Luis Valley (SLV) in July 2018 with observing systems

distributed throughout the northern half of the valley (Fig. 1).

The SLV is one of the largest high alpine deserts in the world. It

is flanked by the LaGarita and San JuanMountains to the west

and the Sangre de Cristo Mountains to the east. Two major

canyons spill into the valley from the west with the Saguache
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Canyon entering from the northwest and theRioGrandeRiver

Canyon emanating from the southwest. The two mountain

ranges come together at the northern end of the valley with

Poncha Pass [2746m above mean sea level (MSL)] connecting

the SLV with the Arkansas River Valley to the north.

Conventional observations within the SLV are limited to just a

few surface observations, partial coverage with the Pueblo

NEXRAD radar and satellite observations.

The SLV experiences a large diurnal cycle in temperature,

which is due to a limited amount of moisture, that drives me-

soscale and finer-scale flow patterns into and within the valley.

These features make the SLV an interesting ‘‘laboratory’’ for

testing new atmospheric observing systems and data assimila-

tion techniques targeting improved skill of mesoscale predic-

tions. LAPSE-RATE consisted of daily intensive observation

periods (IOPs) in which a number of small UASwere deployed

to predefined locations across the northern half of the valley to

observe the evolution of the lower atmosphere under a variety

of mesoscale forcing conditions. Data collected during the IOP

on 19 July 2018 were used to evaluate the utility of UAS ob-

servations to improve analysis and prediction of drainage flow

evolution using an EAKF data assimilation approach.

a. Drainage flow IOP

Cold air drained from the Saguache canyon (Fig. 1) every

morning during LAPSE-RATE (see Pinto et al. 2021).

Drainage flows originate from nocturnal radiative cooling in

the surrounding higher terrain that generates gravity driven

density currents that flow down slopes and canyons (Defant

1951). On 19 July 2018, radiative cooling was fairly strong

with the surface air temperature at Saguache Airport

dropping a total of 178C overnight (Fig. 2a). The cooling was

interrupted at 0600 UTC as high clouds drifted over the

northwestern portion of the SLV during this time. Drainage

winds from the northwest occurred throughout the night at

Saguache (Fig. 2c). The drainage winds abruptly turned to the

up-canyon direction at 1500 UTC (about 3 h after sunrise).

The magnitude of the overnight cooling was similar at Moffat

(Fig. 2b). At Moffat, low-level winds retrieved with the CU

Doppler lidar suddenly shift from west-northwesterly to

easterly after 0600 UTC (local midnight) in response to

drainage winds down the west side of the Sangre De Cristo

Mountains (Fig. 2d). After sunrise, the flow at Moffat trends

toward southerly through the morning hours as the flow in the

SLV transitions to upvalley. The differences in the evolution

of winds at these two sites located just 25 km apart reveals the

importance of using a high-resolution model with accurate

terrain representation and the accompanying DA with flow-

dependent error covariance structures on the scale of the

local terrain-driven flows.

During the drainage flow IOP, UAS platforms and mobile

mesonets were deployed to Sagauche canyon and to the

northwest quadrant of the SLV (Fig. 1; Table 1) to sample the

depth, extent, and timing of the drainage flow. Regular UAS

flights started at 1130 UTC (0530 MDT), the coldest point of

the day, and continued until 1700 UTC, capturing the reversal

in flow from drainage to up-canyon and upvalley at 1500 UTC.

Multiple radiosondes were launched from both a mobile

sounding vehicle at North Farm and from the Collaborative

Lower Atmospheric Mobile Profiling System (CLAMPS) at

Moffat. Data from all non-UAS observing systems were used

to evaluate the simulations.

b. Description of UAS observations

Several universities deployed a mix of UAS platforms (both

fixed wing and multirotor) to collect measurements of tem-

perature, humidity and winds within the evolving boundary

layer (de Boer et al. 2020c). Details of where and when each of

the UAS platforms flew and other characteristics about sam-

pling methods, including the abbreviated labels used in the text

and figures, are given in Table 1. In this study, only observa-

tions obtained with theUniversity of Colorado Boulder (UCB)

DataHawk2 (labeled CU-DH), University of Kentucky

FIG. 1. A bird’s-eye view of San Luis Valley showing the plat-

form locations during the drainage flow IOP. The shaded contours

show terrain heights, with the San Juan Mountains to the west and

the Sangre de Cristo Mountains to the east. Wind barbs (from a

deterministic WRF simulation) at 100m AGL are shown at

1130 UTC and are red, yellow, and blue for ,2.5, 2.5–5, and

5–10m s21, respectively. Surface station locations are marked with

a white star and are discussed in Table 2, and the town of Moffat is

marked with a dodecagram. The locations of assimilated UAS

observations are labeled in colored text and are discussed in

Table 1. Additional observations used for verification are labeled

in black text (see Tables 1 and 2). The black line segments to the

southeast of Saguache show the UNL CoMet-2 mobile mesonet

track. The dashed orange line shows the Saguache canyon.
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(UKY) Boundary Layer Unmanned Experiment for the

Characterization of Atmospheric Turbulence, generation 5,

(BLUECAT5) (labeled KY-5B, KY-5D, and KY-5E), UKY

DJI M600P (labeled KY-DJ), UKY SOLOW (labeled

KY-SO), UKY S1000 (labeled KY-S1), and University of

Oklahoma (OU) Coptersonde 2s (labeled OU-44 and OU-46)

were assimilated (de Boer et al. 2021a; Bailey et al. 2020b;

Pillar-Little et al. 2021). Data from each of these platforms

were obtained from the Zenodo data archive (de Boer et al.

2020b; Bailey et al. 2020a; Greene et al. 2020).

Profiles of temperature and u- and y-wind components of the

total wind were obtained continuously at several locations in

Saguache Canyon and across the northern portion of the SLV

(Fig. 3). Several UKY fixed wing aircraft (KY-5B, KY-5D, and

KY-5E) flew stacked north–south transects over Saguache

Airport. The KY-DJ flew transects across a narrowing portion

of the canyon 6 km to the northwest of the airport. At the same

time, OU Coptersonde 2s performed rapid vertical profiling

up to 925m above ground level (AGL) (3225m MSL) near

the mouth of Saguache Canyon and at Moffat. Low-level

FIG. 2. Observations obtained during the drainage flow IOP including temperature (value

on ordinate) and relative humidity (value denoted by the color bar) from (a) the Saguache

AWOS and (b) the CLAMPS (located at Moffat). Also shown are wind direction (value on

ordinate) and wind speed (value denoted by the color bar) from (c) the Saguache AWOS and

(d) the lowest return height (40m AGL; 1-min averages) of the Windcube lidar at Moffat.

The vertical dashed lines indicate the period during which UAS flew.

TABLE 1. Summary of UAS platforms and locations for the 19 Jul 2018 drainage flow IOP. In the profiling method column,

‘‘Step’’ indicates horizontal transects of the given length with short ascents/descents at the end of each transect to form a raster pattern,

‘‘Up/down’’ indicates a vertical profile straight up and down, and ‘‘Spiral’’ indicates upward and downward spirals with the given radius.

UAS airframe

Operating

period (UTC) Profiling method

Profiling

interval (min)

Max height

(m AGL) Mean lat, lon Legend label

UKY BLUCAT5B 1250–1640 Step: 2.3 km — 125–200 38.094, 2106.164 KY-5B

UKY BLUECAT5D 1200–1640 Step: 3.5 km — 175–425 38.094, 2106.164 KY-5D

UKY BLUECAT5E 1245–1540 Step: 2.1 km — 150 38.094, 2106.164 KY-5E

UKY DJI M600P 1130–1715 Step: 1.3 km — 270 38.150, 2106.272 KY-DJ

UKY S1000 1210–1715 Up/down 60 310 38.094, 2106.162 KY-S1

UKY SOLOW 1130–1645 Up/down 2 120 38.094, 2106.162 KY-SO

OU Coptersonde 2 1245–1715 Up only 15 925 37.997, 2105.912 OU-44

OU Coptersonde 2 1130–1715 Up only 15 925 38.036, 2106.113 OU-46

UCB DataHawk2 1430–1815 Spiral: 0.5 km 5 350 37.864, 2106.176 CU-DH

OSU SOLO-I 1226–1715 Up/down 10 450 38.036, 2106.133 OSU

BST S1 1200–1400 Stepped-Spirals: 0.8 km 10 330 38.266, 2105.944 BST
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temperature observations indicated the presence of a surface-

based inversion at most of the profiling sites (Fig. 3a). The

u- and y-wind observations obtained with UAS reveal the

spatiotemporal variability of flows across the valley. Prior to

sunrise a northerly component is evident on the west side of the

SLV and in the canyon while on the east side of the SLV winds

are southeasterly through a deep layer (Fig. 3c). By mid-

morning, winds shift to more southerly component across all

low levels but with northerly winds persisting aloft on the west

side of the SLV (Fig. 3d).

Additional UAS observations were obtained outside the

area shown in Fig. 3, including those obtained with the

Oklahoma State University (OSU) SOLO-I (Jacob et al. 2020;

farther up Saguache Canyon) and Black Swift Technologies

(BST) S1 (Elston and Stachura 2020; located south of Poncha

Pass). Observations from these UAS were used to evaluate the

drainage flow case DA experiments.

Data quality considerations are an important aspect of data

assimilation. For example, data obtained during the rapid de-

scent phase of the OU Coptersonde 2 profiling were omitted

from the final observational data stream because the descent

rate exceeded the time constant of the TRH sensor (Pillar-

Little et al. 2021). These observations were removed during

quality control procedures applied during postprocessing by

the UAS operators and thus, were not available for assimi-

lation. Observations obtained from other UAS profile de-

scents were assimilated. Temperatures measured by the

UCB DataHawk2s were 1.28C higher than measured by the

Mobile UAS Research Collaboratory (MURC) tower, and a

correction was made to the final dataset. At the same time,

obtaining wind measurements with UAS can also be chal-

lenging. Bailey et al. (2020b) reported a low bias in wind

speed of roughly 25%. In addition, Bell et al. (2021) found

that the Coptersonde 2 winds had a systematic low bias of

about 1 m s21 that they hypothesized was due to the non-

linear relationship between pitch required to maintain

profile location and drag associated with the changing form

factor of the tilting aircraft. They also showed that corre-

lations between UAS wind direction and those obtained

with radiosonde and the CLAMPS lidar where much lower

than those found for wind speed. Despite these issues,

Barbieri et al. (2019) found that observations obtained by a

range of UAS deployed during LAPSE-RATE agreed re-

markably well (particularly for temperature) with wind

measurements having the largest uncertainty (633%) rela-

tive to observations obtained with the MURC tower.

FIG. 3. Profiles of (top) temperature and (bottom) uwind and ywindmeasured bymultipleUASplatforms during the drainage flow IOP

at (a),(c) 1130 and (b),(d) 1615UTC. The u-wind and y-wind components are plotted adjacent to one another in (c) and (d), with uwinds to

the left. The platforms are labeled in (a), and their locations are shown in Fig. 1.Winds were not measured by the KY-DJmultirotor UAS.

Terrain contours (gray lines) are given in 0.5-km increments, with the innermost contour representing 2.5 km MSL. The location of the

Saguache AWOS is marked with a white star in (a).
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c. Ancillary observation used for verification

Four surface meteorological stations are located in the SLV.

Three surface stations are located at airports/airfields: KALS

(Alamosa), K04V (Saguache), and KRCV (Del Norte), and

one, the CSU CoAgMet mesonet station, is located at Center,

Colorado (Table 2 and Fig. 1). As part of LAPSE-RATE,

Saguache Municipal Airport and Moffat Consolidated School

hosted additional observing systems. A detailed description of

the observing systems deployed to these sites is given by de

Boer et al. (2020d) and summarized in Table 2. Datasets used

to evaluate the data assimilation experiments include those

collected with the University of Nebraska–Lincoln (UNL)

mobile mesonet (Houston and Erwin 2020), the NSSL

mobile sounding system (Waugh 2020a), the University of

Oklahoma/NSSL Collaborative Lower Atmospheric Mobile

Profiling System (CLAMPS) sounding system (de Boer et al.

2021b; Waugh 2020b), two Leosphere WindCube V1 Doppler

lidars (Bell et al. 2020b; Lundquist et al. 2020), the MURC (de

Boer et al. 2020a) and the CLAMPS Doppler lidar (Bell et al.

2020a; Bell and Klein 2020). Note that theWindCube Doppler

lidars retrieve wind profiles with 20-m resolution with range

gates between 40 and 200m AGL, with each profile height

being a 20-m average centered at the height. Inmost cases, only

data up to 160m AGL were reported because of low signal to

noise above this height. The higher-powered CLAMPS lidar

provides coverage between 100 and 2000m AGL.

3. Ensemble data assimilation

The impact of UAS observations on analyses and short

forecasts is assessed using EAKF data assimilation. This im-

pact is assessed by evaluating both the priors and the posteriors

obtained as part of each assimilation cycle as well as a 4-h-long

free forecast initialized from the ensemble mean analysis.

Ensemble data assimilation was chosen over variational

methods to capture uncertainty in the analyses that can be a

function of terrain, time-of-day, and flow characteristics

(Romine et al. 2013; Ha and Snyder 2014). The representation

of uncertainty becomes increasingly critical when attempting

to represent the state of the atmosphere at increasingly higher

resolution (Brousseau et al. 2012; Schwartz et al. 2019). EAKF

also allows for the representation of uncertainties in the UAS

measurements, which determines the degree to which the an-

alyses are fit to the observations. As such, the ensemble

Kalman filter framework is well suited for quantifying these

uncertainties while at the same time being able to optimally

incorporate a range of observational datasets with known or

estimated error characteristics.

a. DART

The data assimilation experiments were run using the

Manhattan release of NCAR’s Data Assimilation Research

Testbed (DART; Anderson et al. 2009). DART uses an en-

semble adjustment Kalman filter (Anderson 2001) that draws

the model state toward being more consistent with observa-

tions while taking into account observation error. After the

filter runs, the ensemble of new model states are integrated

forward in time, and then these steps are repeated sequentially

(cycled). DARTwas cycled every 15min to allow the system to

take full advantage of the frequently updating distributed

network of UAS observations. The EAKF (Anderson 2001)

was configured to use 40 ensemble members with posterior

inflation (relaxation to prior spread) and sampling error cor-

rection (Anderson 2012; Necker et al. 2020). Posterior inflation

is time invariant with a value of 1.12 to maintain ensemble

spread in the response to the relatively dense collection of

UAS observations that can act to reduce the ensemble spread.

Vertical and horizontal filter localization values were used to

prevent observations from impacting unrelated state variables

that may be spuriously correlated at sufficiently far distances

from an observation. Both 333-m and 1-km vertical localiza-

tion values were tested, which are roughly equal to one-third

and the entire profiling depth of the highest-flying (OU) plat-

forms, respectively. Both vertical localization values produced

similar results, with the 333-m value being slightly more skillful

in predicting the shallow drainage flow observed at Saguache

Airport.

Assimilation results are also very sensitive to the horizontal

localization value (Sobash and Stensrud 2013). Results from

sensitivity simulations (not shown) were used to explore the

TABLE 2. Summary of other meteorological observations used in this study. Here PTRH/U indicates pressure, temperature, relative

humidity, and wind.

Station identifier Location Station type

Elev

(m MSL) Lat, lon

Raw data

frequency (s)

PTRH/U

height (m)

KALS Alamosa ASOS 2298 37.435, 2105.867 60 2/10

K04V Saguache Airport AWOS IIIP 2393 38.097, 2106.169 1200 2/10

KRCV Del Norte AWOS IIIP/T 2425 37.714, 2106.352 1200 2/10

CTR01 Center CSU CoAgMet 2348 37.707, 2106.144 3600 2

MURC North Farm CU tower 2325 37.951, 2106.033 ,1 18

CLAMPS-1 Moffat Surface station 2305 37.998, 2105.912 1 3/—

CoMet-2 Mobile UNL mobile mesonet 2313–2354 37.893, 2105.716 1 2.5/3.25

CU Saguache Airport Windcube Doppler lidar 2393 38.907, 2106.169 1 40–220

CU Moffat Windcube Doppler lidar 2305 37.998, 2105.912 1 40–220

CLAMPS-1 Moffat Lidar wind profiler 2305 37.998, 2105.912 1 15–2000

CLAMPS-1 Moffat Radiosondes 2305 37.998, 2105.912 ,1 Sounding

NSSL North Farm Radiosondes 2313 38.053, 2106.051 ,1 Sounding
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impact of horizontal localization on forecasts valid at Saguache.

Based on these sensitivity experiments it was decided to use a

horizontal localization value (the maximum horizontal distance

that an observation can have an impact) for UAS observations

of 127 km. This value was determined based on the spacing be-

tween UAS profiling sites and the size of the SLV. A more de-

tailed evaluation of the impact of the localization values for

operational UAS observations is beyond the scope of this study,

but is something to consider in conjunction with the design of

operational networks of UAS observing systems (Chilson et al.

2019). Future work is needed to more fully assess localization

choices for a range of environments and sampling strategies. For

the purposes of demonstrating the value of UAS observations

for short-term, low-level wind predictions, only the results using

the 333-m vertical and 127-km horizontal localization values for

UAS observations are discussed below.

b. WRF Model

The Weather Research and Forecasting (WRF) Model

(Skamarock et al. 2008; Powers et al. 2017), version 3.9.1.1, was

used to integrate the ensemble members forward in time. WRF

is a nonhydrostatic, compressible model that uses a hybrid

terrain-following coordinate system. A one-way nested config-

uration (Fig. 4) was used to drive the innermost 1-km domain.

Observations were only assimilated within this innermost

domain. The outer domain was configured to capture the

larger-scale upstream flow features that influenced the region of

interest during LAPSE-RATE. Both domains used 45 vertical

levels from the surface to 200 hPa. Since the focus of this study

was to assess the performance of the model at predicting low-

level flow features in complex terrain, the hybrid coordinate

system was stretched in order to maximize vertical resolution

(nominally 50m) in the lowest 1 km of the atmosphere with the

lowest model level being at approximately 13m AGL. Both

domains used a 4-s time step. The physics parameterizations

used were theMYNNPBL scheme (Nakanishi and Niino 2009),

the RRTMG longwave and shortwave radiation schemes

(Mlawer et al. 1997; Iacono et al. 2008), the Noah LSM (Chen

et al. 1996), and WSM6 microphysics (Hong and Lim 2006).

High, thin clouds were present both in the observations and the

model during overnight hours that likely influenced the evo-

lution of the drainage flow. Preliminary sensitivity studies in-

dicate that these results are not very sensitive to the choice of

microphysics scheme at the short lead times (,3 h) of interest

here. In addition, the ensemble spread adequately spans the

range of uncertainty that may be associated with the treatment

of cloud microphysics, thus, further exploration of the role of

cloud microphysics is beyond the scope of this paper.

1) MODEL INITIAL CONDITIONS

Forty d01 (3-km grid spacing) ensemble members were ini-

tialized using the 0400 UTC (19 July 2018) analysis from the

FIG. 4. The twoWRF domains are outlined in red. The outer domain (d01) and inner domain

(d02) used grid spacings of 3 and 1 km, respectively; DAwas performed on d02 only. The color

contours indicate the terrain height from d01.
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NCEP High-Resolution Rapid Refresh (HRRR; Benjamin

et al. 2016). Balanced potential temperature, u-wind, y-wind,

water vapor mixing ratio, and pressure perturbations were

created for these ensemble members using generic background

error statistics (WRFDA CV3; Parrish and Derber 1992).

These perturbations were used to generate 40 ensemble

members from a single CONUS-scale mesoscale analysis. The

lowest model-level temperature and humidity initial pertur-

bations were added to the soil layer values using a method

similar to Benjamin et al. (2016). This was done to prevent the

loss of ensemble spread in low-level temperature and moisture

after the spinup period. The temperature perturbation was

added to the 4 soil layers with the magnitude of the perturba-

tion decreasing with depth into the soil using multiplicative

factors from top to bottom of 1, 0.6, 0.4 and 0.2. The moisture

perturbation was added to the 4 soils layers using constant

multiplicative factor of 0.2. Perturbation impacts were con-

strained as follows for all ensemble members: water vapor

mixing ratio was kept above 0.001 g kg21, soil temperature was

kept above freezing and soil moisture volume (unitless) was

kept between 0.01 and 1. The d01 ensemble-member initial

conditions were interpolated to the 1-km domain (d02). The

two domains were then spun up until the first observations

were available at 1130 UTC.

2) MODEL LATERAL BOUNDARY CONDITIONS

The d01 (3-km domain) lateral boundaries were forced using

the hourly forecast output from the 0400 UTC HRRR run. A

unique perturbation field was added to each lateral boundary

condition file for the 40 ensemble members. The HRRR

forcing was then interpolated to a 15-min interval to support

the 15-min data assimilation windows. Boundary conditions for

d02 (1-km domain) came from d01 (the 3-km parent domain).

c. Assimilated observations

Observations of temperature, relative humidity and u

and y winds (see Fig. 3) obtained from multiple UAS were

assimilated. Data from all UAS with a 5-character identifier

(UU-xx) listed in Table 1 were assimilated. UKY flight data

transects and profiles were postprocessed to 100-m spacing in

the horizontal and 10-m spacing in the vertical directions to

better match the grid spacing of the model. The UCB

Datahawk2 spirals, which took place within a tight 0.5-km ra-

dius spiral were averaged in 10-m vertical increments to create

profiles. ‘‘Superobs’’ were created from all assimilated UAS

observations using a horizontal radius of 2 km and a vertical

pressure radius of 3 hPa. Superobs are created to reduce the

data density, which minimizes the effect of correlated error in

the measurements while at the same time reducing the un-

correlated error through averaging (Duan et al. 2018). The

technique used to perform superobbing is similar to that de-

scribed in Torn and Hakim (2008), where all available obser-

vations (and their observation errors) of a specific type within

some volume are averaged on a coarser grid than is used in the

model. Observation error variances for UAS observations

were set to constant values, based roughly on the intercom-

parison assessment reported by Barbieri et al. (2019). The

values used for the temperature, relative humidity, and u- and

y-wind components observation-error variances were (1K)2,

(3%)2, and (1m s21)2, respectively. These values are similar to

those used previously in EnKF assimilation of observations

obtained by commercial aircraft (Dirren et al. 2007).

d. DA experiments

Several experiments were run to evaluate the impact ofUAS

data assimilation on the evolution of the drainage flow and its

transition to upvalley flow. A baseline simulation was per-

formed in which the EAKF DA system was cycled every

15min but no observations were assimilated (NoDA). A sec-

ond simulation was performed in which UAS data from mul-

tiple platforms were assimilated using 15-min cycling (UAS).

The resulting analyses and short-term forecasts obtained with

these two configurations are compared to assess the change in

skill afforded by UAS. Last, an additional DA experiment is

performed in which only surface stations observations (SFC)

are assimilated to demonstrate a potential benefit of high-

density observations allowing for a reduction of localization

scale. Additional observations, including those from NWS ra-

diosondes (Denver International Airport and Grand Junction

Regional Airport are the closest to Saguache, 235 km away),

commercial aircraft, radar and satellites are not expected to

directly influence the low-level drainage flow near Saguache or

the low-level temperature, moisture, and winds within the SLV

on the short-prediction time scales being considered for the

mesogamma-scale event studied here. Thus, for simplicity, sur-

face observations are the only conventional observation type

considered. For the SFC experiment, error variances of (1.5K)2,

(5%)2, (1.5m s21)2 were used following the optimization efforts

of Ha and Snyder (2014). Vertical and horizontal localization

values of 1 and 382 km, respectively, were used to spread the

surface observations. The impact of assimilating UAS observa-

tions in addition to surface observations on the accuracy of both

the analyses and forecasts will be explored in future work.

4. The impact of UAS observations on simulated
terrain-driven flows

a. Assimilation assessment at Saguache

Drainage winds, also referred to as downvalley or mountain

winds, and upvalley wind, also referred to as valley winds, are

small-scale, buoyantly driven, shallow and often intermittent

flows (Defant 1951; Orville 1964; Whiteman 2000). These di-

urnally driven flow patterns, well known to any canyon-bound

road cyclist who often will complain of ‘‘headwinds both

ways,’’ occur regularly in regions of sloped terrain where ra-

diative cooling at night producesmore dense air adjacent to the

surface that is forced down terrain gradients via gravity. The

resulting drainage flows can contribute to the development of

deep cold pools in mountain valleys in which strong stable

stratification causes pollutants to build up over time (e.g., Neff

and King 1989; Doran et al. 2002). Alternatively, these flows

can help to purge pollutants by draining polluted air away

from a population center at night (Banta et al. 1997; Pinto et al.

2006). Daytime surface heating along elevated terrain causes a

pressure gradient reversal that drives upvalley and up-canyon

flows (Rampanelli et al. 2004).
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Motivated by the need to improve the prediction of this

circulation pattern and associated potential impacts, these di-

urnally varying terrain-driven circulations have been studied

for many years (Ives 1939; Defant 1951; Bergen 1969); how-

ever, only limited efforts have focused on the impact of data

assimilation to improve model skill at predicting these phe-

nomena (e.g., Hacker et al. 2018). The timing and vertical wind

structure associated with the transition from drainage to up-

valley flow are difficult to analyze and predict in data sparse

regions such as the SLV and thus provide a good test of a data

assimilation system’s ability to capture a mesogamma-scale

variability in the wind field.

The impact of the UAS observations is demonstrated by the

analysis increment field for the u-wind component (Fig. 5). The

analysis increment, plotted for the first cycle when UAS ob-

servations are first assimilated at 1130 UTC, reveals that both

UAS and SFC DA reduce the strength of drainage winds in

Saguache Canyon. However, the analysis increment obtained

with UAS DA for the 10-m u-wind field shows much more

structure with a narrow ribbon of reduced winds extending

into the SLV. The analysis increment obtained for the SFC

DA experiment indicates much more widespread reduction

in the westerly winds across the northern half of the SLV

(Fig. 5b). The analysis increment obtained with UAS DA is

consistent with wind observations obtained with the UKY

BLUECAT5 transects that indicated that the strongest

drainage winds occurred to the south of Sagauche Airfield

(Bailey et al. 2020b)—note the localized area of enhance

westerlies in Fig. 5a.

Results from NoDA and UAS DA are compared to fully

understand the direct impact of UAS DA on the predicted

evolution of conditions at Saguache Airfield using inde-

pendent observations from the Saguache Automated Weather

Observing System (AWOS) for verification. Time series of

successive 15-min forecasts (ensemble mean and spread) of

surface meteorological variables obtained for the NoDA and

UAS DA experiments are shown in Fig. 6. The UAS DA re-

duces analysis uncertainty while increasing the accuracy of the

15-min forecasts of 2-m temperature and relative humidity.

TheNoDA experiment has persistent warm and dry biases that

are decreased by 38% and 82%, respectively, in the UAS DA

simulation. In addition, UASDA clearly reduces model spread

in both 2-m temperature and relative humidity while still

capturing the observations within the62s spread. The RMSE

values are reduced as well, indicating a more accurate depic-

tion of the transition from a cool, moist stable surface layer to a

warm and dry convective surface layer.

UASDA, which begins at 1130 UTC, attempts to reduce the

u-wind bias, but not by much, owing to this level of variability

occurring at a finer scale than can be resolved by the model.

Nonetheless, the overall evolution of the drainage flow and its

transition to up-canyon is better captured in the UAS DA

experiment. In fact, UAS DA results in smaller biases and a

reduction in RMSE in both components of over 30%. While

the NoDA simulations struggle to indicate a wind reversal

from drainage to up-canyon, UAS DA captures this evolution

and even pinpoints the timing of the wind shift occurring at

1430 UTC.

FIG. 5. The analysis increment for the 10-m u-wind component at 1130 UTC obtained for

(a) the UAS simulation and (b) the SFC simulation. The orange stars show the locations of

assimilated UAS observations that are only assimilated in (a), and the white stars show the

locations of assimilated surface observations that are only assimilated in (b). Labeled line

contours are terrain heights (km MSL).
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It can help to better understand some of the remaining

biases in the 15-min wind forecasts of theUASDA experiment

by looking at the 10-m wind components obtained from the

analyses. Successive analyses of the 10-m u- and y-wind from

the UAS DA experiment are shown in Figs. 6g and 6h. Recall

that the analyses include the impact of UAS observations that

were available within a 15-min window centered on the valid

time. The magnitude of 10-m u-wind (i.e., juj) in both the

forecasts and analyses tends to be greater than that obtained by

the AWOS while the magnitude of the y-component forecast

and analysis values (i.e., jyj) tends to be smaller than the

AWOS values.

This consistent pattern of differences between the DA

values (priors and analyses) and the 10-m wind AWOS

observations could have resulted from biases in the UAS wind

observations. The u-wind values obtained with the fixed-wing

UAS (KY-5D and KY-5E) between 20 and 60m AGL agree

fairly well with the UCB Doppler lidar winds in the first range

gate at 40mAGL (Fig. 7). The winds obtained with theKY-SO

quadcopter tended to be weaker than the fixed-wing mea-

surements despite already being corrected for a low bias

(Bailey et al. 2020b). Nonetheless, all UAS measurements of u

wind in this layer indicated a larger u-wind magnitude (e.g., 3–

5.5m s21 at 1230 UTC) than that observed at 10m by the

AWOS (1.5–2.5m s21, Fig. 6g). At the same time, the magni-

tude of the northerly v-component measured by the UAS

(2–3.5m s21) was similar to that obtained by AWOS. The as-

similation of these larger UAS u-wind values at model levels

FIG. 6. Time series of ensemble mean of the priors (solid blue lines) for (top) 2-m tem-

perature, (top middle) 2-m relative humidity, (bottom middle) 10-m u-wind component, and

(bottom) 10-m y-wind component at Saguache with (a)–(d) no data assimilation and with

(e)–(h) UAS data assimilation obtained from successive 15-min cycles. The dark- and light-

blue shaded regions show 1 and 2 standard deviations. Data from the Saguache AWOS are

shown as the blue squares, and the wind-component analyses at Saguache are shown as the

orange lines in (g) and (h). Bias is computed as ensemble mean minus observation.
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between 20 and 60m AGL tended to drive the simulated u

winds away from the weaker AWOS values. A similar, but

opposite effect is evident during up-canyon flow. During the

up-canyon winds that occurred after 1430 UTC, the magnitude

of the y-wind component obtained with all of the UAS (and

KY-SO in particular) tends to be smaller than that observed

with the lidar (Fig. 7b). This systematic underestimate of the

magnitude of the y-wind component results in the y-wind an-

alyses at 10m being too weak after 1500 UTC (Fig. 6h). This

detailed assessment demonstrates the sensitivity of DA to

observational biases and the importance of continuing to im-

prove windmeasurements obtained by small UAS, particularly

in weaker wind regimes. At the same time, the EnKF DA

can be improved either by including vertically varying or

environmentally dependent observation error covariances.

That is, the UAS wind error covariances could be made to be a

function of the wind speed. Last, new techniques that are being

developed to explore ways of implementing dynamic locali-

zation could be employed so that the size of spatial filter is a

function of environmental conditions (e.g., Lei et al. 2020).

To explore the impact of UAS DA on the vertical structure

of winds at Saguache, the 15-min forecasts of the ensemble

mean wind components from the NoDA and UAS DA ex-

periments are compared with winds obtained with the CU

Doppler lidar (Fig. 8). The 1-s lidar data are averaged to 15min

and linearly interpolated in height to match the model vertical

levels. The model vertical grid spacing at low levels is such that

the lidar return heights are within 9m of the grid levels.

The 15-min lidar observations (Fig. 8a) reveal a rapidly

evolving drainage flow with an initially elevated core that de-

scends toward the surface before dissipating between 1400 and

1500 UTC. The ensemble mean winds from the NoDA simu-

lation indicate the presence of a strong drainage flow with an

elevated core of stronger winds that decreases linearly in time.

Consistent with comparisons with surface observations (Fig. 6),

the time–height cross sections of ensemble mean winds ob-

tained with 15-min cycles in NoDA show no indication of shift

to upvalley flow (Fig. 8b). The 15-min ensemblemean forecasts of

winds obtained with UAS DA do a better job of capturing the

observed descent of the drainage flow jet toward the surface and

reversal of winds to up-canyon just after 1430 UTC (Fig. 8c),

which never occurs in the NoDA simulation. While the upvalley

flow obtainedwithUASDA is weaker than observed, thismay be

due, in part, to biases in theUASwind componentmeasurements

relative to those obtained with the Doppler lidar, as noted above.

Nonetheless, the u-wind and y-wind biases averaged over all lidar

return heights and times are reduced by roughly 40%when UAS

observations are assimilated. At the same time, UASDA reduces

the RMSE in low-level u- and y-wind components by over 40%

by providing a better representation of the decent of the low-level

jet core and timing of the flow reversal.

Vertical profiles of state-space RMSE are shown for both

analyses (after assimilation) versus and the forecasts (priors)

for temperature, relative humidity, and both wind components

(Fig. 9). The RMSEs are computed by differencing the model

values (priors and analyses) from the superobbed UAS ob-

servations that have been interpolated into model space. The

RMSE represents an average across the entire domain for all

15-min DA windows for each 10-hPa layer. While differences

in mean errors of the temperature forecasts and analyses are

relatively small, these differences are much larger for relative

humidity and the wind components. Smaller RMSEs are found

for relative humidity with themaximum difference being near the

surface. The wind-component RMSEs, which peak at 2ms21 for

the u-wind forecasts are reduced to 0.5ms21 for both components

after assimilation (Fig. 9b). These plots indicate thatUASdata are

clearly having a positive impact on winds and relative humidity

within the lowest 1km of the atmosphere.

b. Assimilation assessment across the San Luis Valley

The impact of UAS data assimilation is also assessed using

independent NSSL and CLAMPS radiosonde data obtained at

FIG. 7. Time series of (a) u-wind component and (b) y-wind

component from the lowest return height of the Doppler lidar

(40m AGL) and averaged for 60 s (gray line). Also shown are the

15-min-averaged lidar observations (gray circles) and the assimi-

lated UAS observations from approximately 20–60m AGL ob-

tained from several UKYUAS (KY-SO and KY-S1 are multirotor

and KY-5D and KY-5E are fixed wing UAS) that were flown at

Saguache Airport (orange, blue, green, and red symbols).
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two locations in the SLV separated by 15 km (see Fig. 1). The

NSSL sounding at 1300 UTC shows evidence of a shallow layer

of very light drainage winds (northwesterly) from the surface

up to 100m, southeasterlies from 100 to 500m and north-

westerlies aloft (Fig. 10). The sounding data are only plotted at

model vertical levels to facilitate direct comparison with the

ensemble mean 15-min forecasts. While neither simulation is

able to capture the fine-scale variations in vertical structure

that were observed at this time, the UAS DA clearly shifts the

profile closer to reality than the NoDA benchmark. The biases

in each component are reduced by over 30%. In addition, the

uncertainty (given by the ensemble spread) in the UAS run is

clearly reduced compared to the NoDA simulation while, im-

pressively, the observed values still fall within 1s of the en-

semble mean. Note that the simulated vertical variations are

smoother than observed, likely because of excessive vertical

diffusion by the PBL scheme and perhaps also ensemble

averaging.

The 1300 UTC CLAMPS radiosonde observations indicate

the presence of a easterly jet at 325m shifting to northwesterly

above 750m with lighter southeasterly winds just above the

surface (Fig. 11). The NoDA experiment ensemble mean in-

dicates northwesterlies from the surface to 1 km AGL with no

indication of a jet core, completely missing all aspects of the

observed vertical variations in winds. In contrast, the UASDA

experiment ensemble mean captures the low-level easterly

u-wind component with a weak enhancement of the easterly

winds at 325m. While still underestimating the strength of this

easterly jet, the overall representation of u winds results in

significant reductions in u-wind RMSE and bias relative to

NoDA. These improvements come at the expense of a slight

degradation in the y-wind component in the UAS DA exper-

iment due to increased offsets in the representation of the

y wind just above the surface (manifested as an erroneous

northerly component between the surface and 250m). It is

hypothesized that the smoother jet structure in the UAS DA

may be the result of averaging among all members, but, again,

may also have been caused by excessive vertical diffusion of

momentum by the PBL scheme. Additional studies using

meso- tomicroscale coupling experiments are being performed

to evaluate the role of the PBL scheme in underestimating the

strength of the easterly jet in this case.

A comparison of the modeled and observed temperature

and humidity profiles at the NSSL sounding location is shown

in Fig. 12. Both simulations struggle with the inversion strength

(58C) and/or depth. The 10m depth of the inversion cannot be

captured by either simulation because the model vertical res-

olution is too coarse. The UAS DA simulation captures the

magnitude of the temperature inversion (58C) much better

than NoDA.While the NoDA simulation has a smaller RMSE

for temperature, it underpredicts the strength of the surface-

based inversion by a factor of two and has very large uncer-

tainty. The UASDA reduces uncertainty by a factor of 2 while

still bracketing the truth, albeit with uncertainty approaching

2s just above the surface. Similar to issues with capturing fine-

scale vertical variation in the wind, the layer of cold tempera-

ture biases below 325m is likely, in part, due to issues with

handling vertical mixing by the PBL scheme under strongly

stable conditions (e.g., Shin and Hong 2011; Dimitrova et al.

2014) and points to the need for further investigation of

the coupling between high-resolution DA and PBL scheme

response. The temperature profile obtained with UAS DA

FIG. 8. Time–height plots of (left) u-wind component and (right) y-wind component at Saguache Airport from

(a) the Doppler lidar, (b) priors from no assimilation, and (c) priors fromUAS assimilation. The dashed white lines

in (b) and (c) show the approximate maximum vertical range of the lidar shown in (a). Bias and RMSE computed

across all range gates and times shown.
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captures the 500-m vertical extent of the observed isothermal

layer while the NoDA experiment is essentially adiabatic

above 125m.

Improvements are also evident in the analyses of relative

humidity. UAS DA greatly reduces the dry bias evident in the

NoDA simulation and picks up on the magnitude of the low-

levelmoisture inversion that is completelymissed in theNoDA

simulation. In fact, the dry bias in the ensemble mean of the

NoDA experiment of over 230% near the surface is absent in

the UAS DA experiment. Here, the UAS DA is influencing

low-level moisture in a way that counteracts poor initialization

of the soil moisture that is a main cause for the bias just above

the surface.

At Moffat (CLAMPS location), there was a slightly weaker

but deeper inversion than at the NSSL mobile sounding loca-

tion at 1300 UTC (Fig. 13). The NoDA simulation predicts an

inversion at this time, but it is too shallow. The UAS obser-

vations improve the predicted depth and strength of this in-

version relative to the observations. The UAS DA simulation

also removes the large dry bias and better captures the in-

creasing relative humidity closer to the surface.

The UAS observations had a positive impact on the ther-

modynamic of the lower atmosphere at locations far from

where the data were collected. Independent observations

FIG. 9. Domain- and time-averaged state-space RMSE at 10

interpolated levels (obtained by averaging all comparisons within

each 10-hPa vertical slice) as computed by comparing the forecast

priors (blue) and analyses (orange) with UAS observations (in-

terpolated in model grid space) for (a) temperature (solid) and

relative humidity (dashed), and (b) u wind (solid) and y wind

(dashed). A total of 1505 temperature and relative humidity ob-

servations (after superobbing) were assimilated and 1365 u- and

y-wind observations were assimilated over the period from 1130 to

1645 UTC.

FIG. 10. Profiles of (left) u-wind component and (right) y-wind

component given by the ensemble mean of priors (solid blue lines)

valid at 1300 UTC for (a) no assimilation and (b) UAS assimilation

for the grid point nearest to the NSSL radiosonde launch location.

The dark- and light-blue shaded regions show 1 and 2 standard

deviations. The sounding wind components interpolated to model

levels are given by the blue squares. The RMSE and bias are given

for this single comparison time.

FIG. 11. As in Fig. 10, but for the grid point nearest the CLAMPS

and observations from radiosondes launched at the CLAMPS

location.

FIG. 12. As in Fig. 10, but for (left) temperature and (right) relative

humidity.
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obtained farther up the canyon by the OSU SOLO-I UAS (see

Fig. 1) indicate that a weak inversion existed from the surface

to 400m AGL in the drainage source region (Fig. 14). The

NoDA simulation does not capture this inversion and is too

dry. UAS DA significantly improves the priors of both the

temperature and humidity profiles by removing the low-level

warm bias and better capturing the weak surface-based in-

version. This notably reduces RMSE while maintaining a

similar magnitude bias. Most impressive is the improved per-

formance in relative humidity prediction. The214.5% dry bias

in NoDA is completely eliminated and the vertical gradient in

relative humidity, which was missing from the NoDA predic-

tions, is nearly replicated after UAS data are assimilated.

5. Assessment of UAS DA impact on free forecasts

To assess the impact of UAS DA on free forecasts of the

evolving terrain-driven flows, the 1300 UTC ensemble mean

analyses obtained from both the NoDA and UAS DA exper-

iments are used to initialize free forecasts that were run for 4 h.

Figure 15 shows the lowest model level y-wind component and

wind barbs of the ensemble mean analysis valid at 1300 UTC.

Winds are generally light in both simulations but much more

variable in direction in the UAS DA analysis. Both analyses

depict the northwesterly drainage component coming out of

Saguache Canyon but the NoDA analysis extends the north-

westerlies too far into the SLV compared to the mobile mes-

onet observations. These independent observations indicate

the presence of easterly return flow that is also captured in the

analysis obtained with UAS DA.

At 1430 UTC (1.5 h into the free forecast), southeasterly up-

canyon flow is observed within the Saguache Canyon. Farther

upstream, winds are easterly at the NSSL location sounding

location and northeasterly at the MURC. To the south,

drainage flow continues at del Norte while upvalley winds are

occurring at Alamosa (Fig. 16). The flow field obtained with

UASDA compares much better to the observed flow field than

that obtained with NoDA in the northern third of the SLV

where UAS observations were collected. While the upvalley

flow feature is clearly the main circulation at this time in both

simulations, the wind direction associated with this flow differs

between the two simulations with that in the UAS being

more southerly (in better agreement with the observation at

Alamosa and Moffat). Second, the wind direction at Saguache

has reversed in the UAS assimilation but not in the NoDA

simulation. In fact, the drainage flow is still prominent in the

NoDA simulation at this time. Third, the area of northerlies

and northeasterlies in the UAS DA run agree well with the

observations at the MURC. There is a clear west-to-east gra-

dient in winds in this area where the winds shift from north-

easterly at the MURC location to southeasterly at Moffat. The

NoDA simulation has no indication of these wind patterns with

predominantly westerly winds in this area. Note that both

simulations struggle with the drainage flow emanating from the

del Norte Canyon, which is not surprising considering that

UAS were not flown in this region.

Ultimately, over the course of the 4-h free forecasts the one

initialized from the UAS DA analysis better predicted the

evolution of temperature, relative humidity and winds at

Saguache (Fig. 17). Importantly, the warm dry bias is greatly

reduced throughout the 4-h free forecast and the sudden wind

shift at 1400 UTC associated with the transition to up-canyon

flow is well captured when UAS data are assimilated after just

1.5 h of cycling. This indicates that UAS DA has adjusted the

initial model state enough to substantively improve key aspects

of the simulation several hours into the future.

6. Discussion

One of the benefits of ensemble DA is that it provides the

ability to quantify forecast uncertainty and to develop proba-

bilistic products that assess the likelihood of an event. Here a

probabilistic guidance product that depicts the likelihood of

drainage winds across the SLV is presented. The probability is

computed by counting the number of member priors (i.e.,

15-min forecasts) with u . 0 and y , 0m s21 and dividing by

FIG. 13. As in Fig. 11, but for (left) temperature and (right) relative

humidity.

FIG. 14. Comparison of model profiles of (left) temperature and

(right) relative humidity obtained with ensemble mean of priors

and independent observations obtainedwithmultirotorUASflown

at theOSU site at 1300UTC. TheRMSE and bias are given for this

single comparison time.
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the total number of members (40). It is evident that the as-

similation of UAS observations increases the probability of

drainagewinds over NoDAand SFCDAbothwithin Saguache

Canyon and just to the south and west where the canyon

empties into the SLV (Fig. 18). The drainage flow likelihood

above the surface is even higher in theUASDAcase, but oddly

lower in the SFC DA case. There are also notable differences

in the distance drainage winds are likely to penetrate into the

SLV. The NoDA simulation has probabilities exceeding 40%

extending to the center of the northern SLVwhile both the SFC

and UAS DA notably reduce the likelihood drainage winds

extendmuch beyond themouth of SaguacheCanyon. In fact, the

UAS DA simulation shows only a very low possibility of low-

level drainage winds reaching the NSSL sounding location.

Observations discussed earlier indicate that there was a

sharp cut off in the distance drainage winds extended into the

SLV. Specifically, drainage winds were only observed at the

westernmost segment of themobile mesonet transects (Fig. 15)

and only briefly reached the NSSL sounding launch site at

1300UTC (Fig. 10) marked by the eastern star in Fig. 18.While

probabilistic predictions require many realizations to verify,

the impact of UAS DA seems to work in the correct direction

both in terms of the enhanced likelihood of drainage winds in

Saguache Canyon and with regard to the distance that the

drainage flow extended into the SLV. Thus, UAS observations

clearly improved the depiction of low-level drainage winds

compared to results obtained with the NoDA and SFC DA

experiments.

While UAS DA clearly improved the depiction of the

drainage flow over both NoDA and SFCDA, biases in some of

the UAS wind component observations may have limited the

overall skill of the UASDA analyses and forecasts. Correlated

biases in the UAS wind component observations could have

been caused by uncertainties or offsets in aircraft attitude or

orientation or due to averaging used to upscale the high reso-

lution UAS measurements to match the 1-km grid spacing or

both; S. C. C. Bailey (2020, unpublishedmanuscript) found that

the drainage winds observed with UAS on this day were

strongest to the south of the Saguache AWOS station with

reverse flow occurring just to the north of the AWOS station

indicating the large horizontal variability in the drainage

winds. Note also that the observational error variances were set

to constant values in this study. Additional work is needed to

assess the validity of this assumption by evaluating how ob-

servational uncertainties vary with platform type, profiling

method and observational technique (especially for winds in

which the components may be derived from aircraft motions or

be computed from a multihole probe). Finally, there are also

FIG. 15. Lowest-model-level (;13m AGL) y-wind component (colored contours), wind

barbs (black), and terrain heights (black contours lines) from the 1300UTC analysis with (a) no

assimilation and (b) UAS assimilation. The cyan wind barbs show wind observations from the

lowest available observation height from the BST UAS (at Poncha Pass), the Windcube

Doppler lidars at Saguache andMoffat, the NSSL sounding, and the surface observations from

the MURC 18-m tower and the surface meteorological stations at Del Norte, Alamosa, and

Center (see Fig. 1 for locations). The magenta wind barbs show additional wind observations

obtained at three locations along a 15-min east–west–east transect by the UNL mobile mes-

onet. The half flags denote wind speeds of at least 1m s21, and the open circles denote winds

speeds of ,1m s21. The location of each barb is at its head.
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likely observational error covariances that should be explored

(e.g., relative humidity error may have a temperature depen-

dence) and incorporated into the error estimate used to

perform EAKF.

The ability to accurately represent local properties of

drainage flows (e.g., within a narrowing canyon) and their

coupling with large-scale flows within a DA framework is

challenging due to the need to correctly represent variability

across a range of scales. The UAS DA simulation better cap-

tured the magnitude of the early morning inversion, but the

cooling is spread over a layer that is three times deeper than

observed (Fig. 12). This bias may have been caused by the

treatment of vertical diffusion under stable stratification by the

PBL scheme. Supporting this hypothesis is evidence from a

real-time LES simulation of this same drainage flow case that

reveals that a more explicit treatment of the boundary layer

could better capture this shallow inversion (Pinto et al. 2021).

However, for assimilation of UAS DA into mesoscale models

additional studies using less diffusive PBL schemes (e.g., Olson

et al. 2019a) are warranted.

The key point here, is that as UAS collect observations of

increasing spatiotemporal resolution, and these data are as-

similated at ever more fine grid spacings, the response of pa-

rameterizations must be evaluated and may reveal biases that

were previously hidden. As such, as modeling moves toward

finer scales, UAS observations and UAS DA can be used to

verify and improve physical parameterizations such as PBL

schemes, surface-layer treatments and impacts of land surface

heterogeneities. As we have shown in this study, based on

evaluation of analyses that result fromUASDA, it appears the

PBL scheme employed was likely too diffusive. However,

more systematic evaluations over a longer period of time are

needed to fully quantify biases and their dependencies on

physical parameterizations following the methodology of

Wong et al. (2020). An important consideration moving

FIG. 16. As in Fig. 15, but 1.5 h into the free forecast (valid at 1430 UTC). The observation from

the BST UAS is not available at this time. The magenta wind barbs show wind observations ob-

tained at three locations along a 15-min west–east–west transect by the UNL mobile mesonet.

FIG. 17. Time series from 4-h-long free forecasts of 2-m (a) air tem-

perature and (b) relative humidity and40-m (c)wind speedand (d)wind

direction at Saguache initialized with the 1300 UTC analysis ensemble

mean with no assimilation (blue) and UAS assimilation (orange).

Observations (gray) are from the Saguache AWOS in (a) and (b) and

the 1-min 40-m AGL lidar return in (c) and (d). The model winds are

taken from the second vertical level, which is nominally at 40m AGL.
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forward with fine-scale UAS DA is that most parameteriza-

tions are not necessarily designed to be run at increasingly

higher resolutions (scale aware) and may need to be adapted

(e.g., Frassoni et al. 2018; Jeworrek et al. 2019) to improve the

influence of fine-scale DA, particularly within the boundary

layer where observations from small UAS will be coming on-

line. The development of scale-aware parameterizations to

represent boundary layer processes is an area of active re-

search (e.g., Shin and Hong 2015; Choi and Han 2020; Kosović

et al. 2020) that will need to be interwoven with fine-scale UAS

DA in the PBL.

7. Summary and conclusions

The impact of assimilating UAS observations on the accu-

racy of analyses and the skill of short-term predictions of

terrain-influenced mesoscale flows in a high alpine desert has

been assessed. Observations from a fleet of small UAS were

assimilated using an EAKF. To the authors’ knowledge this

study represents the first attempt to use EAKF to assimilate

observations obtained with several coordinated small UAS.

Experiments were conducted to explore the impact of UAS

observations on predictions of low-level (below 1 km AGL)

temperature, humidity and wind profiles during the transition

from nocturnal to daytime boundary layer and associated

evolving flow patterns.

The utility of DA was quantified by evaluating the 15-min

forecasts (priors). UASDAgenerally reduced bothRMSE and

bias in the 15-min forecasts of temperature, winds and hu-

midity by over 40% versus the NoDA benchmark. In addition,

the timing, strength and horizontal extent of the drainage

winds are much better depicted in the UAS DA simulation

than that obtained with both the NoDA and SFC DA experi-

ments. UAS DA was particularly important for correctly pre-

dicting the timing of the transition from drainage to upvalley

flow in longer free forecast while reducing biases in surface air

temperature, relative humidity and winds for lead times of up

to 4 h. In future work, OSE studies will be performed to further

evaluate the benefit of UAS observations relative to surface

observations for cases observed during LAPSE-RATE.

The favorable impact of UAS DA on the accuracy of

analyses and predictions have been demonstrated at the

mesogamma-scale. Given the scale over which UAS observa-

tions were collected, it is unlikely that their net positive influ-

ence will have improved analyses much farther beyond their

region of influence as defined by localization, although more

sensitivity studies with varying localization values and varying

other relevant DA parameters would be useful future work. As

discussed, increased accuracy in the free forecast persisted for

about 4 h, which is consistent with mesogamma-scale im-

provements. However, observing system simulation experi-

ment (OSSE) studies have indicated that more widespread

distribution of UAS sampling (as one might achieve either

through dedicated weatherUAS or leveraged fromwidespread

commercial operations with symbiotic reporting of weather

data) could significantly improve other predictions at much

FIG. 18. Probability of drainage flow at the lowest model level at 1300 UTC for (a) NoDA,

(b) UAS assimilation, and (c) SFC assimilation. (d)–(f) As in (a)–(c), but at 116m AGL. The

white stars show the locations of Saguache and the NSSL soundings. The probabilities are only

shown in the SLV (terrain height , 2600m).
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larger scales (Chilson et al. 2019). While OSSEs can be per-

formed (using simulated weather and observing system data)

across a range of environments to assess the value of new ob-

serving system and to evaluate and optimize sampling strate-

gies, OSEs are also needed to demonstrate that these benefits

are indeed achievable in practice with real weather and real

observations. Additional research with both OSSEs and OSEs

are needed to fully assess the potential value of UAS DA

under a range of environmental conditions. Key to these

studies will be a discussion on how these improvements to the

accuracy of predictions afforded by UASDA can be translated

to improve decision-making and thus economic value across a

range of industries.

As the need for accurate high-resolution predictions of

weather continues to grow, more accurate mesoscale analyses

and predictions will be needed to initialize and drive the lateral

boundaries of the next generation of meso- to microscale

modeling systems (Haupt et al. 2019). The need for more

detailed weather information spans a number of economic

sectors. Agricultural practices and wind energy resource

management rely on accurate and detailed predictions of low-

level winds for irrigation and crop maintenance as well as wind

energy prediction. Likewise, commercial UAS delivery and

infrastructure inspection services require a high-resolution

depiction of low-level winds for flight planning (Campbell

et al. 2017; Roseman and Argrow 2020). Fine-scale variability

in winds resulting from local circulations and boundary layer

structures is inherently less predictable than variability re-

sulting from larger-scale forcing. Thus, as the need for fine-

scale analyses and predictions of low-level winds and weather

continues to expand, so will the need for forecast uncertainty

information. As demonstrated in this study, the EnKF DA

approach provides an excellent framework for both improving

mesoscale predictions via UAS DA and providing an estimate

of analysis and forecast uncertainty.

Assimilation of observations from commercial UAS (e.g.,

Fleischer 2019) coupled with those obtained with new UAS

weather observing networks, such as the 3Dmesonet proposed

by Chilson et al. (2019), could result in a notable jump in the

skill and reduction of uncertainty in mesoscale analyses and re-

sulting fine-scale predictions. As such, commercial UAS could

help to improve the weather predictions they and other economic

sectors require, analogous to the impact of observations collected

with commercial aircraft today (James and Benjamin 2017). This

more accurate depiction of mesoscale flows is needed to drive the

next generation of resident-GPU LES models (e.g., Sauer and

Muñoz-Esparza 2020) thatwill ultimately provide probabilistic

microscale predictions in real time.
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